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Abstract. Many practitioners and researchers advocate that the de-
signs of the data models of the data warehouses should incorporate the
source data as much as possible to answer the finest levels of queries. On
the other hand, the source data are very likely to come from systems de-
signed with ER Diagrams. Therefore, many researches have been devoted
to design methodologies to build multidimensional model based on cor-
responding source ER diagrams. However, to the best of our knowledge,
no algorithm has been proposed to systematically translates an entire
ER Diagram into a multidimensional model with hierarchical snowflake
structures. The algorithm proposed in the paper promised to do so
with two characteristics, namely, grain preservation and minimal dis-
tance from each table to the fact table. Grain preservation characteristic
guarantees that translated multidimensional model has cohesive granu-
larity among entities. The minimal distance characteristics guarantees
that if an entity can be connected to the fact table in the derived model
with more than one paths, the one with the shortest hops will always
be chosen. The first characteristic is achieved by translating problematic
relationships between entities with weight factor attributes in bridging
tables and enhancing fact tables with unique primary keys. The second
characteristic is achieved by including a revised shortest path algorithm
in the translating algorithm with the distance being calculated as the
number of relationships required between entities.

1 Introduction

As enterprizes worldwide strive to compete on real time management, providing
valuable information in time to managers to help them perform timely decisions
has become a critical mission for MIS departments in organizations worldwide.
Among the related applications installed, data warehouses play a vital role for
integrating, storing, and querying data. The data collected in data warehouses
come from various transactional processing systems, such as, ERP, POS, etc. The
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collected data are cleaned, integrated and organized into structures designed for
easy access and quick comprehension, for the purpose of decision making [11, 12].
With its wide applications, many researches have been devoted to the study of
proper models of data presentation [1–5, 7–10, 12, 13, 15–21]. The dominant data
model for representing a data warehouse is multidimensional modelling1, also
known as a malposition model, which is composed of a fact table in the center and
a set of dimensional tables in the peripheral. The fact table stores measures of
performance indicators which managers are interested to know and dimensional
tables provide the viewpoints or entry points to view the data. A fact table
and corresponding dimensional tables are linked by storing the primary keys of
dimensional tables in the fact table. Figure 1 is excerpted from [13] and shows a
sample multidimensional model with a fact table and three-dimensional tables.
The grain is the level of detail at which measurements or events are stored [13,
20]. To have cohesive querying results, the multidimensional models designed
must have consistent grains, as pointed out by Inmon & Kimball [11, 13]. After
the grain is declared, all measures in the fact table and all dimension tables
must adhere to the grain. Otherwise, unexpected query result may be returned.
Following is an example of the grain mismatch. In a typical supermarket visit,
customers may buy several products in one transaction and the dollar amount
of each product is aggregated into a total. Given a multidimensional model
recording the total dollar amount of each transaction, the grain is in the level
of transaction. (shown in Figure 2). If products are also stored as a dimension
in the model, then querying the transaction amounts from product dimension
will return figures that not only include amount of the product but also the
amounts of other products purchased in the same transaction. The difference is
due to the grain mismatch in the fact and the dimension table. The grain of the
fact table is in transaction level, which may contains more than one products.
Therefore, designing a model with coherent facts and dimensions is vital in
designing multidimensional models.

 

 
Fig. 1. A Sample Multidimensional Model; source [13]

1 Multidimensional model is also referred as dimensional model in some studies



An Efficient and Grain Preservation Mapping Algorithm 333 

 
Fig. 2. The many-to-many relationship between the fact and dimension tables

On the other hand, data in a data warehouse are populated from source
systems whose data probably are modeled by ER diagrams [6]. Therefore, the
source ER diagrams show the most finest granular data that can be stored in a
corresponding multidimensional model. If a systematic approach can be found to
build multidimensional models to store data retrieved from the source systems
modeled by ER diagrams, the work of model designers can be greatly reduced
and more importantly, the errors committed can also be dramatically reduced.

Therefore, practitioners and researches have strived to propose methodologies
to design multidimensional models from existing ER diagrams [3, 5, 8, 9, 14–
16, 19–21]. Even though [12, 16, 20] acknowledged the importance of grain consis-
tence, they provide only vague guidelines for the mapping and do not specify any
concrete algorithms to perform task. Moody and Kortink [16] proposed a three-
step method,including classifying entities, identifying hierarchies and producing
dimensional models, for developing a dimension model from entity relational
models. They also presented five optional schemas in the paper, from simple flat
schema to complex snowflake schema. Song et al.[20] presented five methods to
handle many-to-many relationships from an ERD to a dimension model. The
possible solutions can be either adding a bridge table, denormalizing the dimen-
sional table by positional-flag attributes or non-positional attribute, lowering the
grain of the fact table to the dimension grain level, or lowering the grain of the
fact table by separating data from the fact table.Bonifati et al. [4] presented a
method to design a data mart. The method consists of three steps: top-down re-
quirement analysis to elicit and consolidate user-requirements, bottom-up data
model extract to form candidate data mart, and consolidation to derive the
ideal data marts. Similarly, Cabibbo and Torlone [5] proposed method to ob-
tain a Multidimensional schema from an underlying operational databases. The
schema consists of a finite set of dimensions, a finite set of F-tables, and a fi-
nite set of level descriptions of the dimensions. Golfarelli et al. [8] presented a
graphical conceptual model (Dimensional Fact model) for data warehouses and
a semi-automated methodology to construct a tree-structured fact schema from
an Entity-Relation schema. Marotta et al. [15] provided a set of transformation
rules to trace the mapping between source logical schema and data warehouse
logical schema. Tryfona et al., [21] presented a new model, the starER model, to
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make semantics richer than traditional multidimensional model to record many-
to-many relationships between fact and dimensional tables.Boehnlein et al. [3]
proposed the SERM model to visualize existence dependencies between data
object types.

The approach proposed in the paper differs from the other approaches in
following ways:

(a) the algorithm systematically performs ER Diagrams to multidimensional
model translation, given the fact table identified,

(b) the algorithm guarantees that adding a new entity to the structure does not
change the grain of existing entities,

(c) the snowflake structure proposed by the algorithm takes the fewest relation-
ship to connect dimensions and the given fact table.

The remainder of this paper is organized as follows:
Section 2 formally defines grain preservations. Section 3 presents the ER to

multidimensional translation algorithm. Section 4 explains how the two charac-
teristics are achieved by the algorithm.

Section 5 uses a case to demonstrate the algorithm. Finally, the summary
and future work is presented in Section 6.

2 Grain Preservation

As Kimball pointed out [13], a multidimensional model in general contains a
fact table and a set of dimension tables. Each dimension table has a primary key
which is also a foreign key of the fact table. The primary key of the fact table is
the composition of all the foreign keys stored in the dimension tables.

If grain mismatch happens between the fact table and any of the dimension
tables then the query result may be wrong [13, 20]. The erroneous queries return
values that aggregate individual measures more than one time. Hence, a multi-
dimensional model with the consistent grain should aggregate at most one copy
of individual measure, regardless of the dimensions users querying along. Before
formally defining grain preservation, we need to define two operators, namely,∑

and �.

Definition 1 Given a table, T , with m of its attributes are measures,namely,
ai1, . . . , aim, and n of its attributes are weight factors, namely, aj1, . . . , ajn.

–
∑

aik =
∑

t∈T t.aik, for 1 ≤ k ≤ m
–

∑
(T ) = 〈∑ ai1, . . . ,

∑
aim〉.

– �(T ) = {t′|∀a ∈ attriubtes of T, t ∈ T, (a /∈ {ai1, . . . , aim} → t′.a = t.a) ∧
(a ∈ {ai1, . . . , aim} → t′.a = t.a ∗ t.aj1 ∗ . . . ∗ t.ajn)}
With the � operator, a measure can be refined to finer grain. Table 1 shows

a sample table with customer# as a non measure attribute, amount and cost as
measures and weight factor1, weight factor2 as weight factor attributes.

Table 2 shows the result of applying � operator on Table 1.
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Table 1. A sample Table

customer# amount cost weight factor1 weight factor2
c125 50 30 0.4 0.2

c125 50 30 0.6 0.8

c125 50 30 0.4 0.8

c125 50 30 0.6 0.2

c127 40 30 1.0 1.0

Table 2. Applying � to Table 1

customer# amount cost weight factor1 weight factor2
c125 4 2.4 0.4 0.2

c125 24 14.4 0.6 0.8

c125 16 9.6 0.4 0.8

c125 6 3.6 0.6 0.2

c127 40 30 1.0 1.0

In a multidimensional model with snowflakes, a table can be added as a
dimension table, which connects to the fact table directly, or as a table in the
snowflake hierarchy, which is composed by a set of tables connected as a tree
with the fact table as the root. A table added to a multidimensional model
without breaking the existing grain provides an entry point to correctly summary
measures.

Definition 2 Given a multidimensional model with a fact table, F , and a table
T , if adding T to the multidimensional model results in a path of F, D1, . . . , Dk, T
connecting T to F , and

∑
(�(F � D1 . . . � Dk � T )) =

∑
(F ), where � is a

natural join operator then the addition is called Grain Preservation.

3 The Mapping Algorithm

The section shows a relationship translation algorithm, which translates entities
and relationships in an ER diagram to dimension tables in a multidimensional
model while keeping grain preservations and taking the least join operators.

Given the ER diagram of a source system, the entities connecting to others
with some many-to-many relationships and including additive numeric attributes
are candidates for being the fact tables [12]. The paper assumes that a table in
the source ER diagram is identified as the fact table which contains several fact
attributes, also known as measures.

Given a source ER diagram with 〈E, R〉, where E is the set of entities and
R is the partial functions of relationships in the ER Diagram. R : E×E → {‘1-
1’,‘1-M’,‘M-1’,‘M-N’}, where ‘1-1’,‘1-M’, ‘M-1’ and ‘M-N’ denote the cardinality
of the relationships.

A multidimensional model is a 〈DE, DR〉, where DE is the set of tables in
the model, and DR is the partial function of relationships between the tables.
Every entity in E, and DE is assumed to have a primary key.
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3.1 Naive Mapping Rules

The naive mapping rules analyze the R between entities in the source ER di-
agram and translate corresponding entities and relationships into multidimen-
sional model. Translation of ‘1-M’ and ‘M-to-N’ relationships may produce grain
mismatch if they are not handled carefully. As pointed out in [12, 13, 20],the
mismatch can be corrected by lowering the grain in the fact tables or the grain
in the dimension tables. In the case of snowflaked multidimensional model, we
argue that lowering the grain of dimension tables should be more preferable since
the same methodology can be applied to lower the grains of tables down in the
snowflake hierarchy.

If R(Ei, Ej) exists and Ei ∈ DE then Ej is added to the DE in following
ways:

– Rule#1: R(Ei, Ej) = ‘M-to-1’
In this case, the translation is straightforward.

DE = DE
⋃

{Ej}
DR = DR

⋃
{DR(Ei, Ej) = R(Ei, Ej)}

Figure 3 shows an example of such cases.
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….
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 Fig. 3. Transformation in a ‘many-to-one’ relationship
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– Rule#2: R(Ei, Ej) = ‘1-to-M’
Since the grain of Ej is finer than the grain of Ei, an attribute of weight
factor is added to Ej to tune the grain of Ej .

E′
j = Ej + weight factor

DE = DE
⋃

{E′
j}

DR = DR
⋃

{DR(Ei, E
′
j) = R(Ei, Ej)}

Figure 4 shows an example of ‘1-M’ relationship translation.

 

……….……..……………

2004/11/20400040O003

2004/10/15200030O002

2004/10/1100020O001
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……….……………

O0010.2R003
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2004/1025

2004/10/20

2004/10/5

Return_Date

……….……………

O0014R003

O0023R002

O0012R001
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Fig. 4. Translation of a ‘one-to-many’ relationship

– Rule#3: R(Ei, Ej) = ‘M-to-N’
Since The grains in the two tables are incompatible, a bridging table B is
added to tune the grain. The table has two foreign keys coming from Ej ,
and Ei, respectively, and an attribute of weight factor[12, 20]. The foreign
key from Ei groups entries in Ej so that the combinations of the entries
have the same grains as the corresponding entries in the Ei. The attribute
of weight factor records the contribution of the entries in the group. The
summation of weight factor in each group should be equal to one.

B = 〈weight factor〉
DE = DE

⋃
{Ej, B}



338 Yen-Ting Chen and Ping-Yu Hsu

DR = DR
⋃

{DR(Ei, B) = ‘1 − to − M ′}
DR = DR

⋃
{DR(B, Ej) = ‘M − to − 1′}

Figure 5 shows such an example. The algorithm of transformation rules is shown
in Figure 6.

ProductOrderMany-to-Many

Relationship
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.....
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O001
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Order_No

……….………

0.8P004

0.7P002

0.3P001

WeightProd_No
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……….…….......………
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Fig. 5. Translation of a ‘many-to-many’ relationship

Algorithm: MR
Input: E0 //the fact table

〈E, R〉 //the original ERD
Output: 〈DE, DR〉 //the desired multidimensional model

Begin
〈L0, L〉 = Shortest distance(E0, 〈E, R〉)
DE = {E0}
While ∃Ei, Ej ∈ E

and Ei ∈ DE ∧ Ej /∈ DE
and L(E0, Ej) = L(E0, Ei) + min(L0(Ei, Ej), L0(Ej , Ei)) do {
case R(Ei, Ej) {

when (1,1) then apply rule#1
when (M,1) then apply rule#1
when (1,M) then apply rule#2
when (M,N) then apply rule#3

}
}

Return 〈DE, DR〉
End;

Fig. 6. Relationship Translation Rules
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3.2 Applying the Mapping Rules to an ER Diagram

This section further explains the process of building an entire multidimensional
model from a given source ER diagram. The algorithm proposed assume that
a fact table in the source ER diagram has been identified and strives to find a
multidimensional model with the least number of number of relationships.

Since an ER Diagram can be translated to more than one multidimensional
model, the major decisions lie on the selection of relationships to form the trans-
lated multidimensional model. The point is illustrated by following example.

Example 1 An original ERD as shown in Figure 7(A) that includes several loop
relationships. A loop among the snowflake tables causes problems in aggregating
measures when querying data. A loop means there are more than one path to
join a given table in the loop to the fact table. The different path may aggregate
measures differently and cause confusion. Therefore, loop in the given ER dia-
gram has to be broken when translating the ER diagram into a multidimensional
model.
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Fig. 7. An example of the same ERD being transformed into different multidimensional
models

A loop can be broken in several ways. For example, the original ER diagram
shown in 7(A) can be translated to two different ERDs (in Figure 7(B1)(C1)).
Next, different multidimensional models (see Figure 7(B2)(C2)) are generated by
applying the naive mapping rules shown in section 3.1. The differences between
the two figures are highlighted in circles.

Hence, given an ER diagram, there are more than one way to build a cor-
responding multidimensional model. The paper proposes to use a shortest path
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algorithm to derive the multidimensional model where each entity has the short-
est path to the fact table. The distances between entities and the fact table
are counted by the number of relationships between them, since the more the
relationships, the more join operators are needed to perform queries. Readers
will find that the calculation of distances can be changed to many other for-
mula, such as the estimated numbers of tuples participated in each join, without
jeopardizing the integrity of the algorithm.

To compute the shortest distance between the fact table and all other ta-
bles, an initial distance matrix has to be built. The initial matrix is formed
by scanning the entire ER diagram and for each entity pair that are connected
by relationships other than ‘M-to-N’, the initial value of ‘one’ is assigned. For
relationships that are ‘M-to-N’, an initial values of ‘two’ are assigned to the
corresponding entries since a bridging table will be needed in the translation.
After deriving the initial matrix, the algorithm then calculates the shortest path
matrix, which is asymmetric. The diagonal elements are filled with zeros.

Zeros in diagonal entries of the distance matrix represent that the distance
between an entity and itself is zero. Such an assumption may in contradiction to
entities with self reference relationship in ER Diagrams. However, in the paper,
the translated multidimensional model is assumed to be free of self reference
relationships. The assumption is based on the widely adopted practice that most
self reference relationships are flatten into corresponding entities to save query
processing time. The algorithm of the Shortest Distance Computing is shown in
Figure 8.

4 Correctness Proof

The section proves that given an ER diagram of 〈E, R〉 with a fact table iden-
tified, the algorithm of MR returns a 〈DE, DR〉, which satisfies Grain Preser-
vation in the process and all tables are connected to fact tables with the least
relationships.

Theorem 1 Given an ER diagram and a fact table, the process of adding enti-
ties to 〈DE, DR〉 by algorithm MR is Grain Preservation.

Rationale
Only the addition of entities with relationships of ‘1-to-M’ and ‘M-to-N’
may challenge grains of a multidimensional model. However, since the
summary of weight factors in each group in the two cases have to equal
to one, the grain is still be kept according to Definition 2.

The fewer the relationships between entities and the fact table in a multi-
dimensional model, the more efficient the queries issued from the entity can be
processed.

Theorem 2 Given an ER diagram and a fact table, the multidimensional model
discovered by algorithm MR connecting each entity to the fact table with the least
number of relationships.
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Algorithm: Shortest Distance
Input: E0 //the fact table

〈E, R〉 //the original ERD
Output L0: Initial Distance Matrix

L : Shortest Distance Matrix
Begin

Fill L0 with ∞
// scan the original ERD and assign initial value to each relationship
for i=0 to | E | do {

for j=1 to | E | do {
for each R(Ei, Ej) do {

if R(Ei, Ej) = ‘M-to-1’ then L0(Ei, Ej) = 1
elseif E(Ei, Ej) = ‘1-to-1’ then L0(Ei, Ej) = 1
elseif R(Ei, Ej) = ‘1-to-M’ then L0(Ei, Ej) = 1
elseif R(Ei, Ej) = ‘M-to-N’ then L0(E,Ej) = 2

}
}

}

//Computing shortest path matrix
for i = 0 to |E | {

for j = 0 to |E | {
for k = 0 to |E | {

L(Ej, Ek) = min(L(Ej , Ek), L(Ej , Ei) + L(Ei, Ek))
}

}
}
return L0, L

End;

Fig. 8. Computing the Shortest Distance Between Entities and the Fact Table

Rationale
The distances between entities to the fact table are computed by the rela-
tionships needed to connect the two tables. MR adds only one relationship
to the multidimensional model when needed, which is the most efficient
way found up to date [20] when keeping the grains of fact tables are
mandatory. Besides, the MR algorithm uses the shortest path algorithm
to find the paths with the least relationships to connect entities with the
designated fact table.

5 A Sample Case

In order to show the translation process, a sample is demonstrated in the section.
Figure 9(a) shows a sample ER Diagram derived from a commercial sales order
tracking system. The designated fact table is the order table. With several loops
in the ER diagrams, the diagram can be translated into more than one multidi-
mensional model. The initial distance between connected entities are marked in
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Fig. 9. Computing Distances between Dimensions and the Fact table
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Figure 9(b). The calculated shortest distances between each entity and the fact
table is shown in Figure 9(c).

The corresponding shortest distance matrix is shown in Table 3.

Table 3. the shortest distance matrix from entity Order to other entities

Ordr Rtrn Inv Logs Shp Cust Area Sup Prdt PmtS Str WH PmtT

order 0 1 1 2 1 1 2 4 2 1 1 3 2
Return ∞ 0 2 3 2 2 3 5 3 2 2 4 3
Invoice ∞ ∞ 0 3 2 1 2 6 4 3 3 5 4
Logisitcs ∞ ∞ ∞ 0 1 3 4 6 4 3 3 5 4
Shipments ∞ ∞ ∞ ∞ 0 2 3 5 3 2 2 4 3
Customer ∞ ∞ ∞ ∞ ∞ 0 1 5 3 2 2 4 3
Area ∞ ∞ ∞ ∞ ∞ ∞ 0 6 4 3 3 5 4
Supplier ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 2 4 5 3 3
Product ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 3 3 1 1
Promt Store ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 1 3 1
Store ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 4 2
Warehouse ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 2
Promot type ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

The algorithm MR is then applied to translate selected relationships and cor-
responding entities into a multidimensional model. The transformation process
is illustrated in the following steps and also shown in Figure 10:

(a) The designated fact entities Order is added into DE (identified as Step 1 in
Figure 10).

(b) Based on the elements in the first row in the shortest distance matrix to
transform relationships. Entity Return, Invoice, Shipment, Customer, Pro-
mot Store, Store, and Data warehouse are candidates since their distances
to Entity Order are the shortest. Assuming Entity Return is processed
first. Since the relationship between Return and Order is one-to-many; a
weight factor attribute is added into Return. Return is added into DE and
the R(Order,Return) is added to DR (identified as Step 2 in Figure 10).

(c) With the addition of Entity Return to DE, the eligible entities becomes
Entity Invoice, Shipment, Customer, Prmot Store, Store. Assuming Invoice
is processed next. Since the relationship between Invoice and Order is many-
to-one, the Invoice dimension in added into DE and the relationship of
R(Order, Invoice) is added to DR (identified as Step 3 in Figure 10).

(d) Entities Shipment, Promot Store, Customer and Store are added to the
model as in previous steps (identified as Step 4 through Step 7 in Figure 10).

(e) Entity Product is processed then, the relationship between Product and
Order is many-to-many; a bridge table Prod B with a weight factor at-
tribute will be added in between to tune the grain, the relationships of
R(Order,Prod B) and R(Prod B,Product) are added to DR (identified as
Step 8 in Figure 10).
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Fig. 10. The Translated multidimensional model 〈DE, DR〉

(f) With addition of all entities in level one, Entity Logistics, Promot type,
Area, Warehouse and Supplier are becoming eligible to be processed next.
Entity Logistics, Promot type, Area, Warehouse are process as entity Invoice
done in Step 5 (identified as Step 9 through Step 12 in Figure 10).

(g) Finally, Entity Supplier is processed, the transformation process is same
as Entity Product ; thus, a bridge table Supp B is added into DE and two
relationships R(Product,Supp B) and R(Supp B,Supplier) are added to DR
(identified as Step 13 in Figure 10).

6 Summary and Conclusions

As enterprizes place top priority on real time management, Data Warehouse
systems have become critical information analytical tools. However, most com-
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panies suffer from the lack of experienced Data Warehouse design professionals to
effectively design multidimensional models. On the contrary, people with ERD
concepts and experiences are far more widely available. Hence, deriving data
warehouse schema from ER diagram may be one of the best way to create mul-
tidimensional models. However, a corporate Data Warehouse is not easy to be
built by inexperienced Data Warehouse team in a short time. The techniques
and mapping rules presented here will be valuable for them to have a quick
and correct start. This paper presents a tool to derive data warehouse schema
from ER diagrams. The transformation rules presented in this paper give Data
Warehouse team a great tool to start with.

The main contribution of this paper providing an efficient and correct al-
gorithm to translate ER diagrams into multidimensional model. The algorithm
is efficient because every dimension table in the formed proposed hierarchy is
connected to the fact table through the least expensive path. The algorithm is
correct in that while adding new entities to existing multidimensional models, it
still preserves the grain of the original dimensional model.

The issue of data warehouse model design should also include user require-
ment taking, verification and integration of the requirement with atomic grain
data. Therefore, the work presented in this paper is just a foundation for further
research of systematic data warehouse schema design.
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